Finding Telescopers with Minimal Depth for Indefinite Nested Sum and Product Expressions (Extended Version)

نویسنده

  • Carsten Schneider
چکیده

We provide algorithms that find, in case of existence, indefinite nested sum extensions in which a (creative) telescoping solution can be expressed with minimal nested depth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbolic Summation Finds Optimal Nested Sum Representations

We consider the following problem: Given a nested sum expression, find a sum representation such that the nested depth is minimal. We obtain symbolic summation algorithms that solve this problem for sums defined, e.g., over hypergeometric, q-hypergeometric or mixed hypergeometric expressions.

متن کامل

An Improved Abramov-Petkovsek Reduction and Creative Telescoping for Hypergeometric Terms

The Abramov-Petkovšek reduction computes an additive decomposition of a hypergeometric term, which extends the functionality of the Gosper algorithm for indefinite hypergeometric summation. We modify the AbramovPetkovšek reduction so as to decompose a hypergeometric term as the sum of a summable term and a non-summable one. The outputs of the Abramov-Petkovšek reduction and our modified version...

متن کامل

A Symbolic Summation Approach to Find Optimal Nested Sum Representations

We consider the following problem: Given a nested sum expression, find a sum representation such that the nested depth is minimal. We obtain a symbolic summation framework that solves this problem for sums defined, e.g., over hypergeometric, q-hypergeometric or mixed hypergeometric expressions. Recently, our methods have found applications in quantum field theory.

متن کامل

A Symbolic Summation Approach to Feynman Integral Calculus

Given a Feynman parameter integral, depending on a single discrete variable N and a real parameter ε, we discuss a new algorithmic framework to compute the first coefficients of its Laurent series expansion in ε. In a first step, the integrals are expressed by hypergeometric multisums by means of symbolic transformations. Given this sum format, we develop new summation tools to extract the firs...

متن کامل

Solving Parameterized Linear Difference Equations In Terms of Indefinite Nested Sums and Products

Solving parameterized linear difference equations (problem PLDE) covers various prominent subproblems in symbolic summation [1]. For instance, by using PLDE-solvers for the rational case [2–6] or its q-analog version [7] one can find sum solutions of (q–)difference equations, see [8–10], or one can deal with telescoping and creative telescoping for ∂-finite summand expressions, see [11]. Moreov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005